Limiting behavior of the central path in semidefinite optimization

نویسندگان

  • Margaréta Halická
  • Etienne de Klerk
  • Kees Roos
چکیده

It was recently shown in [4] that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and sufficient condition for strict complementarity. We subsequently show that, in the absence of strict complementarity, the central path converges to the analytic center of a certain subset of the optimal set. We further derive sufficient conditions under which this subset coincides with the optimal set, i.e. sufficient conditions for the convergence of the central path to the analytic center of the optimal set. Finally, we show that convex quadratically constraint quadratic optimization problems, when rewritten as an SDO problems, satisfy these sufficient conditions. Several examples are given to illustrate the possible convergence behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limiting behavior of the Alizadeh-Haeberly-Overton weighted paths in semidefinite programming

This paper studies the limiting behavior of weighted infeasible central paths for semidefinite programming obtained from centrality equations of the form XS + SX = 2νW , where W is a fixed positive definite matrix and ν > 0 is a parameter, under the assumption that the problem has a strictly complementary primal–dual optimal solution. We present a different and simpler proof than the one given ...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Error Bounds and Limiting Behavior of Weighted Paths Associated with the SDP Map X1/2SX1/2

This paper studies the limiting behavior of weighted infeasible central paths for semidefinite programming (SDP) obtained from centrality equations of the form X1/2SX1/2 = νW , where W is a fixed positive definite matrix and ν > 0 is a parameter, under the assumption that the problem has a strictly complementary primal-dual optimal solution. It is shown that a weighted central path as a functio...

متن کامل

Asymptotic behavior of the central path for a special class of degenerate SDP problems

This paper studies the asymptotic behavior of the central path (X(ν), S(ν), y(ν)) as ν ↓ 0 for a class of degenerate semidefinite programming (SDP) problems, namely those that do not have strictly complementary primal-dual optimal solutions and whose “degenerate diagonal blocks” XT (ν) and ST (ν) of the central path are assumed to satisfy max{‖XT (ν)‖, ‖ST (ν)‖} = O(√ν). We establish the conver...

متن کامل

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2005